Module-I
Quantum Mechanics

Mechanics: the study of the behavior
of physical bodies when subjected to
forces or displacements
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Classical Mechanics: describing the Quantum Mechanics: describing
motion of macroscopic objects. behavior of systems at Microscopic
Macroscopic: measurable or level (atomic length scales and
observable by naked eyes smaller)

Classical/Newtonian Mechanics:
» Describes the dynamics of moving objects at macroscopic level.
» Applicable to all objects which have considerable mass i.e., sand stone to asteroids and spherical
shell to massive planets.
» Fails to explain phenomena at microscopic level.
Quantum Mechanics:
» Describes the dynamics of moving objects at microscopic level.
» Applicable to particles with negligible mass such as subatomic particles (electron, proton, neutron)
and photons, phonons.
» Explains all phenomena where CM fails.

Failures of Classical/Newtonian Mechanics:

Classical mechanics fails to explain following phenomena based on its assumptions that energy emitted or
absorbed by a body is continuous and light is a form of wave.

1. Blackbody spectrum

2. Atomic spectrum of hydrogen atom

3. Photoelectric effect and Compton effect etc.,

Black body radiation

A black body is a theoretical object that absorbs 100% of the radiation that hits it. Therefore it reflects no
radiation and appears perfectly black.

Blackbody radiation does not depend on the type of object emitting it. Entire spectrum of blackbody
radiation depends on only one parameter, the temperature, T.

Black body: A hollow spherical shell whose inner surface coated with lamp black acts as a black body.
» A fine hole is made and a pointed projection is provided just in front of the hole.

» When the radiations enter into this spherical shell through the hole, the heat radiations suffer
multiple reflections and they are completely absorbed. Now this body acts as an absorber.

» When this object is heated to higher temperatures, it emits radiation through the hole. This
radiation is known as Blackbody radiation.



Pointed projection

< _ Incident
'\ Radiation
Hole

.}
Radiation

Perfect Blackbody: A perfect blackbody is one which absorbs all the heat radiations (all the

wavelengths) incident on it. Further, when such a body is placed at constant high temperature, it emits
radiation of all wavelengths.

Blackbody radiation: The heat radiation emitted from a blackbody is known as blackbody radiation.

The wavelength at which the maximum energy of radiation emitted depends only on temperature of the
blackbody and it does not depend on the nature of the material.

Laws of Blackbody Radiation:

Wien’s displacement Law: This law states that the product of wavelength (A,,) corresponding to the
maximum energy of radiation and absolute temperature of the blackbody (T) is a constant.

i.e., AmT = constant.
Am = constant / T
or Amoa 1/T

From above equation, it can be observed that the wavelength corresponding to the maximum energy of
the blackbody radiation is inversely proportional to absolute temperature.

As the temperature of the blackbody increases, the wavelength corresponding to maximum energy

decreases. Constant of proportionality is called Wien's displacement constant and equals 2.897768 x 10~
m K

l, 483 nm

—
L]

AT =2898 x 10 mK

l'"?lE g L
% 8 1 : The wavelength of the peak of
27 - the blackbody radiation curve
> 6 4 )\ 6000 K gives a measure of temperature.
‘;; 5 4 {680 nm
2 4, L 5000 K
g 3 L zf‘. ‘i-\
P AN L
& 1§ seapaanm i, 3000 K
L A0 ST MR- s z

: capusbrnarsann
% a® speepevet o

100 500 / 1000 1500 2000 2500
966 nm (IR]  Wavelength (nm)



The spectral radiance of blackbody radiation shows that:

1. The higher is the temperature, the more the energy emission and the shorter is the average
wavelength. (Eal/A and Tal/Ai.e., Ea T)

2. Less amount of energy emitted at very low wavelength.

3. The power radiation increases rapidly as A increases from very small value.
The power radiation is most intense at certain wavelength Amax or vmax for particular
temperature.

5. Am decreases linearly with increasing temperature.

Wien’s Radiation Law: Wien deduced a law for the energy emitted by a blackbody at a given
wavelength (L) and temperature (T) to explain the blackbody spectrum. It is known as Wien’s radiation
law.

The energy density in the wavelength range A and A+ dA is given by
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where C, and C, are constants

T is the temperature of the blackbody, and C; and C, are constants whose values are given by

C; = 8rnhc and C, =hc/k
Limitation: This law holds good only for shorter wavelengths and not for longer wavelengths.
Rayleigh — Jean’s Law

This law states that the energy distribution of a black body is directly proportional to the absolute
temperature (T) and inversely proportional to the fourth power of the wavelength ().
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Where k is the Boltzmann constant. k= 1.38064852 x 10 m* kg s> K
Limitation: This law holds good only for longer wavelengths and not for shorter wavelengths.

Planck’s theory

Max Planck proposed quantum theory around 1900, based on which he succeeded in explaining the
blackbody radiation at all wavelengths. According to Max Planck,



» A black body is not only filled up with the radiations but also with a large number of tiny
oscillators. They are of atomic dimensions. Hence they are known as atomic oscillators or
Planck’s oscillators.

A\

Each of these oscillators is vibrating with a characteristic frequency.

A\

The frequency of radiation emitted by oscillator is same as that of oscillator frequency.

» The oscillator cannot absorb or emit energy in a continuous manner. It can absorb or emit energy
in multiples of small units called quantum.

» This quantum of radiation is called photon. The energy of the photon (E) is directly proportional to
the frequency of radiation (v)
eav
e=hv
h is Planck’s constant. h = 6.6 x 10™** Js

The oscillator vibrating with frequency v can only emit energy in quantum of values hv. It indicates
that the oscillators vibrating with frequency v can only have discrete energy values E,.

Itisgivenby E,=nhv=ng
Where n is a positive integer i.e., 1,2,3 ........

It means that the energy of the atomic oscillator is quantized and integer n is known as quantum
number.

Planck’s Radiation Law: According to Planck, the energy density of heat radiation emitted from a
blackbody at temperature T in the wavelength range from Ato A+ dA is given by

8nhe
E,d\N = —————dA
A ;\5 {eiwfkTh 1)
Here, h - Planck’s constant

¢ — Speed of the light
v — Frequency of radiation
k - Boltzmann’s constant

T - Temperature of the blackbody

The Stefan-Boltzmann Law

According to Stefan-Boltzmann law, the amount of energy radiated is proportional to the temperature of
the object raised to the fourth power.

EoT
®» The Stefan Boltzmann equation
E=ocT
E = Energy density (W/m?), T = temperature (K),o = 5.67 x 10 W/m’K* (Stefan-Boltzmann constant)

This law gives the total energy being emitted at all wavelengths by the blackbody (which is the area under
the Planck Law curve)
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GP Thomson experiment:

G.P Thomson, in 1928 performed an experiment with high Kinetic energy electrons using thin gold foil as the
target material and observed the diffraction pattern due to scattered electrons by gold foil. This experiment
proves the wave nature of electrons and hence the de Broglie hypothesis of matter waves.

Principle:

The fast moving electrons are scattered by the gold foil and produced diffraction pattern on the screen. Since
diffraction is a wave phenomenon, it proves that electrons are behaving as waves. This is the proof of dual nature
of matter as proposed by de Broglie.

Experimental arrangement:

The experimental arrangement of G.P Thomson electron diffraction is as shown in figure. It consists of a
filament or cathode C which emits the electrons. A narrow slit S is used to collimate the electron beam emitted
from cathode. Potential difference of 10 — 50 KV is applied between cathode and anode to accelerate the
electrons to very high kinetic energies. These high KE electrons are made to strike a thin gold foil of thickness
100 A° (10®m) and get scattered. The scattered electrons are captured on a photographic plate kept next to gold
foil. The whole setup is kept in a highly evacuated chamber (If not the electrons lose KE by colliding with
molecules of gas/ dust particles).

Photographic film

cathode

||

Anode Gold foil . -~

-

-

-

Vacuum pump | |

Discharge tube

Diffraction pattern

Working:

v/ Using a suitable battery the cathode can be heated, so that electrons will be emitted and pass through a
high positive potential given to the anode ‘A’, then the electron beam passes through a fine slit and
incidents on the gold foil of thickness 10 m.

v The electrons passing through the gold foil are recorded on a photographic plate. Since the gold foil
consists a large number of microscopic crystals oriented at random, the electrons striking the gold foil
diffracts according to Bragg’s law 2d sinf = nA.

v’ After developing the plate, a symmetrical pattern consisting of concentric rings about a central spot is
obtained. This pattern is as similar as the pattern produced by X-rays generated by the high KE electrons.

v" To confirm that the pattern produced is due to electrons but not due to the X-rays, magnetic field is
applied normally in between the gold foil and the screen. The pattern is observed to be shifted on
application of the magnetic field.



v This confirms that the pattern is produced by electrons and not by X-rays (X-rays pattern is not affected
by electric and magnetic fields). Hence the pattern is formed due to diffraction of electrons by the crystal
planes of gold foil.

v As the diffraction pattern can only be produced by waves and not by the particles. So Thomson
concluded that electrons behave like waves.

Theory:

From the figure, OC is the radius ‘r’ of the ring as O is the center of the ring, B is the point where the electrons
strikes a particular point on the gold foil. BO is the distance between the gold foil and the photographic plate and
is represented by L.

From figure tan 260 =r /L C
= If 0 is very small, tan (6) ~ 0
= Hence 20=r/L ................ 1) Incident _

From Bragg’s law, 2d sinf = nA ?::;tnzon Gotd f" radius
= If 0 is very small, sin (6) = 0 A—rp (
= 2d0 = nh Bragg plane

For first order diffraction n=1
= 20=A/d i (2)

Fromequ (1) and (2), we haver/L=2A/d
= d=AL/r i (3)

From de Broglie wavelength for electrons, we have 4 = —— ............... 4)

Here, my is the rest mass of electron.
L h
Substitute equ (4) inequ (3) =& d = — (—)
r/2m,eVv
= d=4.08°A
From X-ray diffraction method for first order diffraction, 2d sin@=nA
= d=A/(2sin0) =4.06 A (n=1)

Thus the value of ‘d’ obtained from G.P. Thomson experiment and X-ray diffraction method are the same,
demonstrating the de Broglie’s concept of matter waves. Thomson also concluded that the wavelength of
electron only depends on the accelerating voltage and is independent of the material of the target.
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MODULE-1V

LASERS

A. LASERS

Introduction:

LASER is a device that emits light through a process of optical amplification based on the
Quantum effect called stimulated emission of electromagnetic radiation. LASER is an acronym
for Light Amplification by Stimulated Emission of Radiation.

Distinguish between conventional licht and Laser light:

3.
4.
5.

Conventional light
It emits photons in all directions with
wide range of wavelengths.
These are incoherent (No fixed phase
among the photons emitted by the source).
May be multi-wavelength
Intensity is low
Ex.:- Electric Bulb, candle, etc.,

Characteristics of Laser light

1.

2.

b

Laser light
It emits photons in a narrow, well-defined
directional beam.
These are highly coherent (constant phase
relationship among the photons)
Single wavelength or color.
Intensity is very high.
Ex.:- Ruby Laser, He-Ne Laser, etc.,

Like ordinary light laser light is electromagnetic in nature. However, there are few characteristics
not processed by the normal light. Some of the main characteristics of laser beam are mentioned
below:

1.

High Monochromaticity,
Extremely Directional,
Extremely Coherence,

4. High Intensity and brightness.
Monochromaticity: The light emitted from
a laser is highly monochromatic, that is, it is
of one unique wavelength (color). The light
from a laser typically comes from one
atomic transition with a single precise
wavelength. So the laser light has small
broadening width (AA) and is almost the
purest monochromatic light.

w -

Intensity () —»

o e e - s ] q
4—— Laser source

le——— 10 A

Maw source
]
1

1000A  — 5
Wavelength () —»

For Ordinary white light, AA= 300 nm, For monochromatic light, AA= 5-10 nm

For Laser light, AA= 0.2 nm
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2. Directionality: We know that when light travels then it tends to spread out, this spreading of
light is called divergence and the angle at which the light spreads is called angle divergence
(¢). Generally divergence is more in ordinary light and lesser in laser light.

Usually a laser generates
less than one mille radian
(0.001) divergent beam. This [ASER [1) ( ) a1 a2
means that a beam from the
laser will spread to less than - |
lcm diameter at a distance of 10 d1
m from the laser. The laser d |
beam divergence is illustrated in : !
the adjacent figure.

3. Coherence: The light coming from the Laser

is said to be coherent, which means the group W

- l‘z_'l'l
dy—dy

divergence, ¢

of photons (Laser beam) are in phase in
space (Spatial) and time (Temporal). Laser W
light is much more coherent than ordinary
light. Figure: Coherent Light Waves

4. Intensity and Brightness: Intensity of a wave is defines as energy per unit time flowing
through a unit normal area. In Laser light, energy is concentrated in small region of space with
small wavelengths with greater intensity. A laser beam has brightness many times in magnitude
greater than that of conventional sources due to high directional property of laser beam.

Therefore, Laser light is an extra ordinary light emitted under stimulated and amplified
conditions, so that the beam is characterized by high intensity, specific directionality,
high monochromaticity and high degree of coherence.

ABSORPTION, SPONTANEOUS AND STIMULATED EMISSION:

To describe the phenomenon of Absorption, spontaneous or stimulated emission, let us
consider two energy levels, 1 and 2, of some atom or molecule of a given material, their energies
being E; and E, (E,<E>).

i. Absorption: Let us now assume that the atom is

initially lying in level 1 (Adj. Fig.). If this is the Absorption

ground level, the atom will remain in this level 2 . —E:
unless some external stimulus (photons) is applied to

it. We shall assume that, a photon of frequency v is hv i

incident on the material. In this case there is a finite MN—'
probability that the atom will be raised to level 2.
The energy difference E,—E; required by the atom to

1 . Ex
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undergo the transition is obtained from the energy
of the incident photon. This is the absorption
process.

Spontaneous emission: Let us now assume that
the atom is initially in level 2. Since £, > Ej, the
atom will tend to decay to level 1. The
corresponding energy difference, E,—E;, must
therefore be released by the atom. When this

Spontaneous emission

2

E

2

energy is delivered in the form of an

T ~

E;

1

electromagnetic wave called photon, the process will be called spontaneous (or radiative)

emission.

iii. Stimulated emission: Let us now
suppose that the atom is found initially in level 2
and that a photon of frequency v, is incident on
the material (Adjacent Fig.). Since this photon
has the same frequency as the atomic frequency,
there is a finite probability that this photon will
force the atom to undergo the transition 2—1. In
this case the energy difference E,—F is delivered
in the form of a photon that adds to the incident

Stimulated emission
P
_

AVA"\ " A\ g
N\

2

E2

one. This is the phenomenon of stimulated emission.
There is a fundamental difference between the spontaneous and stimulated emission processes.
In the case of spontaneous emission, the atoms emits a photon that has no definite phase relation
with that emitted by another atom. Furthermore, the photon can be emitted in any direction. In
the case of stimulated emission, since the process is forced by the incident photon, the emission
of any atom adds in phase to that of the incoming photon and along the same direction.

EINSTEIN’S COEFFICIENTS:

In 1916, Albert Einstein proposed that
there are three processes occurring in the
formation of an atomic spectral line. The three
processes are referred to as spontaneous
emission, stimulated emission, and absorption.
With each is associated an Einstein coefficient
which is a measure of the probability of that
particular process occurring. Einstein considered
the case of isotropic radiation of frequency v, and
energy density p(v).

5
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Let us consider N; and N, be the populations in the energy levels of energies E; and E;
respectively in a system of atoms at a thermal equilibrium of temperature 7.

Upward transition:

Absorption is the process by which a photon is absorbed by the atom, causing an electron to
jump from a lower energy level E; to a higher one E». The process is described by the Einstein
coefficient Bj,,

The absorption rate is directly proportional to /N; and p(v)
Therefore, Rate of absorption = B;;N.p(v) = ———————- 1)
Here B;; is Einstein’s coefficient of absorption.

Downward transition:

Spontaneous emission is the process by which an electron "spontaneously" (i.e. without
any outside influence) decays from E, to E;. The process is described by the Einstein
coefficient A45;.

Spontaneous emission rate is directly proportional to N, only.
Therefore, Rate of spontaneous emission = AN, -—--------—--- 2)
Here, A3, is the Einstein’s coefficient of spontaneous emission.

Stimulated emission is the process by which an atomic electron in the excited E; is
interacting with a photon of certain frequency may drop to a lower energy level E;, transferring
its energy to that photon. A new photon created in this manner has the same phase, frequency
and direction of travel as same as the incident photon. The process is described by the Einstein
coefficient By,

Stimulated emission rate is directly proportional to N, and p(v).
Therefore, Rate of stimulated emission = B,yN, p(V) --—--—--- A3)
Here, B;; is the Einstein’s coefficient of stimulated emission.
Consider an ideal material with only two non-degenerate energy levels, at thermal equilibrium,
Absorption = spontaneous emission + Stimulated emission ~ --——-- “)
i.e. BLN;p(v) = AN, + BisNoptv) = &)

Bi:Nip(v) - Bi2Nsp(v) = AN
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[B12N;1 — B21N2]| p(v) = A21N2

P

Az1N7

[B12N1—B21N2]

1

Az1N;

or e Bz1N2{[

" o T

Np\B3q

N1(B12)]_
N2\B21

1
(6)

But, in thermal equilibrium, the Boltzmann’s distribution law applies, so,

N; = Nyexp (_—El) and N, = Nyexp (;T{E;)

kgT

where, IV, is population in ground state and kg is the Boltzmann’s constant.

Therefore, M= exp [ﬁ] = exp [—
N, kgT

hv
kT

Substituting eq. (7) in eq. (6), we get

p(v) =221

B21 {[exp

1

(Since, E,-E;= hv)

()5l

According to Plank’s law of black body radiation at temperature T we have the energy density
p(v) at frequency v is

P )

8mhv3 1

Comparing eq. (8) and eq. (9), we get

A1

8mhv3

B21

c3

(10)

B12 -1
B21

Equations (10) and (11) show the relations between Einstein’s coefficients B;z, B,; and Az;.

From the above relation eq. (10) shows that the ration of rate of spontaneous (A7) to rate of
stimulated emission (B;;) is proportional to cube of the frequency of the incident radiation.
The eq. (11) shows that the rate of absorption is equal to the rate of stimulated emission, when

the system in equilibrium.

POPULATION INVERSION:
At thermal equilibrium, the no of atoms in level 2 is less than the no of atoms in level 1
(N2<N)). The process of making of higher population level 2 than the population in level 1 is

Page|5



MODULE-1V

known as population inversion (N,>N,) This is highly non equilibrium situation. When the
population inversion exists, rate of stimulated emission is greater than rate absorption occurs and
the light passing through the material is amplified.

E4 1

i F
Es|Nst ET

Normal Population £, [
Eaf Mg

2 Population Inversion
oINS Na<na<ny E- [N »
E > SR
oy Elrml

= I -

Population Mumber N N

LASER PUMPING:

The process of achieving the population inversion by sending the atoms from lower level
to higher levels through supply of energy to the lower level atoms is called laser pumping. The
supply of energy is usually provided in the form of light (Optical) or electric current
(Electrical). But, more exotic sources such as chemical or nuclear reactions can also be used.

i. Optical Pumping: Optical pumping is a process in which light is used to raise or pump
electrons from lower energy level in an atom or molecule to higher one. It is commonly used
in solid state lasers (Ex.: Ruby Laser, etc.).

ii. Electrical Pumping: Electric discharge is common in gas lasers. Gas lasers have very narrow
absorption band, pumping then in any flash lamp is not possible. In most of the cases
population inversion is created by means of electric discharge. (Ex.: He-Ne Laser etc.)

META-STABLE STATE:

Metastable state is an excited state of an atom or other system with a longer lifetime than
the other excited states. However, it has a shorter lifetime than the stable ground state. Atoms in
the metastable state remain excited for a considerable time in the order of 10°to 10”s. During
metastable state, all the parameters associated with state hold stationary values. A large number
of excited atoms are accumulated in the metastable state.

The population of metastable state can exceed the population at a lower level thereby
establishing population inversion in a lasing medium. Population inversion could not be created
without a metastable state.

THREE LEVEL SCHEME:

We have seen that the key to laser action is to obtain a population inversion between two
levels of energy £ and E, with E,>E|, so that more atoms are in the level 2 than in the level 1. In
the three-level lasers figure, we look for three levels in an atom such that E5>FE,>FE; , with a fast
decay between levels 3 and 2 and a slow decay between 2 and 1. Incident radiation of angular
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frequency v3; = (E3 — E;)/h is used to
raise as many atoms as possible from the
level 1 to level 3. Note that a population
inversion cannot be obtained between levels
3 and 1, because when the number of
atoms Ns in level 3 equals the number N; in
level 1, absorption will be balanced by
stimulated emission and the material will
become transparent at the frequency v;;. If
level 3 decays rapidly to level 2, a
population inversion can be obtained
between levels 2 and 1. An example is the
ruby laser.

FOUR LEVEL SCHEME:

Except in special cases, E4
such as the ruby, it is difficult to
produce a population inversion
between a ground state and an
excited state, because initially all

Es

the atoms are likely to be in the FPumpingbetween
level 1 & 4

ground state, and we have to get
more than half the atoms into level Ex
2 before a population inversion
can be achieved. An easier
approach is to use a four-level
system in the adjacent figure and

attempt to create a population L2

Three Level scheme

Es .
Faset Decay
E: K 2
Pumping Between Laser Action Between
Levels 1 and 3 Levels 2 and |
E1 - 1
Four Level Scheme :
Fast Decay
3

Laser Action

Between Levels 3 and 2
2
Fast Decay
1

inversion between two excited levels. We start with all the atoms in the ground statel, and none
in the excited states 2, 3 and 4 (E,<E;<Ej). Level 4 is chosen so that it has a fast decay to level 3,
and pumping between levels 1 and 4 immediately produces a population inversion between
levels 3 and 2. As level 2 begins to fill up by stimulated emission at the frequency (E3-E»)/h, the
population inversion will decrease. To minimize this, level 2 is chosen so that it has a fast decay

to the ground state.

REQUIREMENTS FOR THE LASER SYSTEM:

The basic requirements of the Laser system are shown in below figure. It consists of three basic

parts as given below:
i.  Pumping System
ii. Active medium
iii. Optical Resonator
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i. Pumping System: Pumping source is the basic energy source for a laser. It gives energy to
various atoms of laser medium & excites them, so that population inversion can take place
and it is maintained with time. The excitation of atom occurs directly or through atom or
atom collision.

There are various types of Optical Resonator
pumping systems depending on /
the nature of the active medium.
ii. Active Medium: Active medium ] Active
Medium

is the heart of the laser system and

is responcible for producing

population inversion (gain) and High Reflectance T T T T Output Coupler
subsequent generation of laser. It Mirror (HR) Mirror (OC)
can be a solid, liquid,
semiconductor or gas medium and
can be pumped to higher energy
state.

iii. Optical resonator: It plays a very important role in the production of laser beam from the
laser system. It is a setup used to obtain amplification of slimulated photons, by oscillating
them back and forth between two extreme limits. It consists of two plane or concave mirrors
placed co-axially. One mirror is fully reflecting and other is partially reflecting.

RUBY LASER:

The first working laser was built in 1960 by T.H. Maiman using a Ruby crystal and so
called the Ruby Laser. This is also called solid state laser or three level laser. Ruby belongs to
the family of gems consisting of Al,O3 with various types of impurities. For example in Ruby

laser used the pink ruby contains 0.05% Cr atoms (Al,03+0.05%Cr,03). The schematic diagram
of the Ruby laser is as follows:

Ruby Rod
Fully reflecting face Pﬂﬂiﬂ"}l' reflecting face
Glass tube q g = == =: 4 £ Laser beam

I
I
I
I
I

Power [

source |-

Xenon flash tube
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Construction: The Ruby laser consists of a ruby rod whose length is few centimeter and
diameter is 0.5 cm. This is made up of with chromium (Cr’") doped ALO; material. Both the
ends of the ruby rod are silvered such that one end is fully reflecting and the other end is partially
reflecting. The ruby rod is surrounded by helical xenon flash lamp tube which provides the
optical pumping to raise Cr™ ions to upper energy level. The light from the xenon flash tube was
focused by the cylindrical cavity onto the ruby rod, thereby exciting the chromium atoms which
were responsible for the laser action.

Working: The ruby laser is a three-

Level system (Adjacent Fig.) since '§§
=
only three energy levels are involved
. . .. Intarnal energy transfer
in the process of stimulated emission. : g 3 to metastabe states by
The depopulation of the ground state — FPumping non-radiative processes
p p. ] ] ] g ] ragian 2
for population inversion is achieved by &
exciting the atoms of the ruby crystal = gg Metastable
with intense light from a xenon flash L s
g . Lasar g e T \/]w,\p-
lamp. Thus the atoms are excited from  wansitiog g 2| 2 Lg
the ground state (level 1) to an upper =" :=: 2B W
. T = E 694.3
state (level 3) by means of absorption. =l i @ 3 N Gn:lu:;
From the energy level 3, the atoms are 8 slate

transferred to energy level 2 without

emitting radiation (non-radiative transfer). The energy level 2 is called met stable level since the
atoms stay at this level for a longer interval of time. Finally, the atoms return to the ground state
from the meta stable level through the process of stimulated emission giving rise to an intense
laser light at 6943A°. The laser beam comes out in the form of a pulse of very short duration
(about a millisecond).

Applications: They are still used in a number of applications where short pulses of red light are
required.

i. Holography's around the world produce holographic portraits with ruby lasers, in sizes up to
a meter squared.

1. Many non-destructive testing labs use ruby lasers to create holograms of large objects such
as aircraft tires to look for weaknesses in the lining.

iii.Ruby lasers were used extensively in tattoo and hair removal.

Drawbacks:

1. The laser requires high pumping power because the laser transition terminates at the ground
state and more than half of ground state atoms must be pumped to higher state to achieve
population inversion.

ii. The efficiency of ruby laser is very low because only green component of the pumping light
is used while the rest of components are left unused
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1i1. The laser output is not continues but occurs in the form of pulses of microseconds duration.

HELIUM-NEON (He-Ne) LASER:

The He-Ne laser active medium consists of two gases which do not interact form a
molecule. Therefore He-ne laser is one type of atomic gas laser and also called as Four level
laser.

Construction:

Fully reflecting mirror Partially reflecting Mirror N

Brewster's Windows

.-’f o
-
7 N
Z N
? b |—
7 Het+Ne (10:1) N
? =
Z b | LASER
? % Ouatput
“A Discharge b
e s
1 Electrodes l
- —
.

DC Power Supply
He - Ne gas laser consists of a gas discharge tube of length 30cm and diameter of 1.5cm.
The tube is made up of quartz and is filled with a mixture of Neon under a pressure of 0.1mm of
Hg. The Helium under the pressure of 1mm of Hg, the ratio of He-Ne mixture of about 10:1,
hence the no. of helium atoms are greater than neon atoms. The mixtures is enclosed between a
set of parallel mirrors forming a resonating cavity, one of the mirrors is completely reflecting and
the other partially reflecting in order to amplify the output laser beam.

Working:
In the He-Ne laser the light produced by atomic transitions within the Neon atom. The

Helium does not directly produce laser light but it acts as a buffer gas, this purpose of which is to
assist/help the atoms of the other gas to produce lasing action.
The active energy levels of He

and Neon atoms are show in adjacent F3 r::_
figure. In helium there are three active ; HET"I‘E Es
energy levels named as F;, F, and F; S<ing 6328 4°

. C Fz —3 i _—
where as in Neon, there are six active
energy levels named as E;, E;, E3 Ey4
Es and Es. In Helium, the metastable Excitdion |1 Sp?ntlanenus

. emission
states are F, and F'3, where as in Neon, electrgn colfisions E
E, and Es. When a discharge is passed with §1 He ptoms %
through the gaseous mixture electrons
are accelerated in the tube these Fr - 3. E:
(Helium) (Neon)
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accelerated electrons collide with the helium atoms and excite them to higher energy levels (£
and F3) since the levels are metastable energy levels, He atoms spend sufficiently long time.
Inelastic collision of the excited helium atoms (¥, and F’;) with the ground state (£;) Neon atoms
results in transfer of energy to the neon atoms, exciting them into E, and Ej states. This is due to
the coincidence of energy levels between the helium and neon atoms. Since E, and Ejs are
metastable states, hence the population inversion takes place between the E4 and E,; with respect
to Es5 and E3. The stimulated emission takes place between Es — E3 gives a laser light of wave
length 6328A° and the stimulated emission between Es —FEs gives a laser light wavelength of
3.39um. Another stimulated emission between Es—E3 gives a laser light wavelength of 1.15pm.
The neon atoms undergo spontaneous emission from E3 —FE2 and E5s — E2. Finally the neon
atoms are returned to the ground state E1 from E2 by non-radiative diffusion and collision
process.

After arriving the ground state, once again the neon atoms are raised to £E6 & E4 by
excited helium atoms thus we can get continuous wave output from He-Ne laser. But some
optical elements placed insides the laser system are used to absorb the infrared laser wavelengths
3.39um andl.15um. Hence the output of He-Ne laser contains only a single wavelength of
6328A° and the output power is about few milliwatts.

Applications:

1. The Narrow red beam of He-Ne laser is used in supermarkets to read bar codes (Bar-code
scanners).
ii.  The He-Ne Laser is used in Holography in producing the 3D images of objects.
iii.  He-Ne lasers have many industrial and scientific uses, and are often used in laboratory
demonstrations of optics.

SEMICONDUCTOR (Diode) LASER (GaAs Laser):

Semiconductor lasers also known as quantum well lasers are smallest, cheapest, can be

produced in mass, and are easily scalable. They are basically p-n junction diode, which produces
light of certain wavelength by recombination of charge carrier when forward biased, very similar
to the light-emitting diodes (LEDs). LEDs possess spontaneous emission, while laser diodes emit
radiation by stimulated emission.
Principle: In the case direct band gap semiconductors there is a large possibility for direct
recombination of hole and electron emitting a photon. GaAs is a direct band gap (1.44 eV)
semiconductor and hence it is used to make lasers and light emitting diodes. The wave lengths of
the emitted light depend on the band hap of the material.
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Construction:

The P™ and N* regions of the
diode are obtained by heavily doped p-
and n-regions of GaAs. The thickness of \ ®
the p-n junction layer is very narrow at
the junction, the side walls are well =
pf)lished and pa.rallehl to each othe‘r. photons bouncing back
Since the refractive index of GaAs is and forth in the crystal h
high, the reflectance at the material air K. 2 > &
interface is sufficiently large so that the /
external mirrors are not necessary to active region 5
produce multiple reflections. The p-n N type
junction is forward biased by [
connecting positive terminal to p-type
and negative terminal to n-type.

Working:
The population inversion

can be obtained by injecting e d
electrons and holes in to the

junction from the n-region and p- E.
region by means of forward bias |
Voltage. When the forward bias g | /] 90 000000000000
is not connected, no electrons E, | 00 000000000000

and holes present in the depletion EFm6_5656_556_5565;" Y EF
1 i' V

mirror “leaky”
ll mirror

_I_
P type &

P-type ] N-type

|~ 1

[~ i

/ £ \ i

/00 000000000000
A ]

B,

region. When small forward bias 000000000000 0Q |
Yoltage is given to the p-n gggggggggggggg |
junction then small number of |
electrons and holes will injected
into the depletion region from
respective regions. When
relatively a large current of the order of 10* A/em? is passed through the junction then large
number of electrons and holes will be injected into the depletion region as shown in above
figure. Then the direct recombination processes take place between holes and electrons in the
depletion region and release the photons. Further the emitted photons increase the rate of
recombination. Thus more number of photons produced having same phase and frequency of the
induced photons.

The wavelength of the emitted radiation depends on the energy band gap of the
semiconductor material. The energy gap of the GaAs Semiconductor is 1.44 eV then it emits
laser light of wavelength ~8600 A°.
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hc  6.625x1073%x3x108
A=—= = 8626 A°

Eg 1.44

The efficiency of the laser emission increases when a cooling arrangement provided to the laser
diodes.

APPLICATIONS OF LASER: There are many scientific, military, medical, industrial and

commercial laser applications which have been developed since the invention of the laser.

i. Laser Drilling: Laser drilling is one of the few techniques for producing holes in hard
materials with desired diameter. The diameter of these holes as small as 5 microns.

Laser-drilling is used in many applications, including the oil gallery of some engine blocks,
aerospace turbine-engine cooling holes, laser fusion components and printed circuit board
micro-vias.

ii. Laser Welding and Cutting: The highly collimated beam of a Laser can be further focused
to a microscopic dot of extremely high energy density for welding and cutting. The
automobile industry makes extensive use of CO, laser with powers up to several KW for
computer controlled welding on auto assembly lines.

iii. Lasers in Data Storage: The reading and writing (Store) of the data on a compact disc (CD
or DVD) is done with semiconductor laser.

iv.Lasers in scientific research:

a) Lasers are used to clean delicate pieces of art, develop hidden finger prints
b) Laser are used in the fields of 3D photography called holography
c) Using lasers the internal structure of micro organisms and cells are studied very accurately
d) Lasers are used to produce certain chemical reactions.
v. Laser in Medicine:
a) The heating action of a laser bean used to remove diseased body tissue
b) Lasers are used for elimination of moles and tumours, which are developing in the skin
tissue.
c) Laser beam is used to correct the retinal detachment by eye specialist.

vi.It is used in biomedical science.

vii. Itis used in 3D photography.

viii. It can be used for measuring velocity of light, to study spectrum of matters, to study

Raman effect.

ix.  Itis used in holography.

X. It is also used in military, like LIDAR.

xi.  Itis used to accelerate some chemical reactions.

xii.  Itis also used in nuclear fusion reactions.

Page| 13



B. FIBER OPTICS

STRUCTURE OF AN OPTICAL FIBER:
Optical Fiber: A very thin, long, flexible, transparent, cylindrical dielectric medium which

guide the light signal propagated through it.
It consists of three parts:
1. Thecore
2. The cladding, /
3. The outer jacket.
e The core is the inner part of the fiber, which
guides the light signal.
e The cladding surrounds the core completely.
e The refractive index of the core (ny)is greater than the cladding(n;) to satisfy the total
internal reflection (n1>ny)
e The outer jacket provides the mechanical protection to the fiber.
The core and cladding diameters are about few microns. Optical fibers are arranged in bundles
called optical cables and used to transmit light signals over long distances.

r
Core Cladding Sheath

PRINCIPLE AND WORKING OF OPTICAL FIBER:
Principle: The transmission of light in optical fiber is based on the principle of Total Internal
reflection.

Let n; and n; be the refractive indices of core and cladding respectively such that n;>n,.
Let a light ray travelling from the medium of refractive index n; to the refractive index n, be
incident with an angle of incidence ¢ and the angle of refraction r. By Snell’s law,

nisin @ =nysinr  ---------- (@)

The refracted ray bends towards the normal as the ray travels from rarer medium to denser
medium. On the other hand, the refracted ray bends away from the normal as it travel from
denser medium to rarer medium. In Optical fiber, the light ray travelled from core (denser) to
cladding (rarer) medium, there is possibility of total internal reflection, if the angle of incidence
is greater than the critical angle (6.).
Critical Angle: When a light ray moves from high refractive index (core) medium to low
refractive index (cladding) medium and for a particular angle of incidence the refraction angle (r)
is 90° then the angle of incidence is known as critical angle (6.).

Cladding Cladding . n
r n, n, Cladding 2
r=90°
ﬁ
n; Core n n,
Core 9 1 ﬂ\
Core
0<o0, 0=0, 6=>0,
Fig.1 Fig.2 Fig.3
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I.  When 6 < 6., then the ray refracted into the second medium as shown in above fig.1.
ii. When 6 = 6., then the ray travels along the interface of two media as shown fig. 2.
iii. When 6 > 6., then the ray totally reflects into the same medium (core) as shown in fig.3.
The critical angle can calculated from Snell’s law, suppose if 8 = 6. then r = 90°, hence
Ny sin 6. = n, sin 90°

. n
sinf, = n—z
1

or 0, = sin~! (ﬂ)
nq
This is known as critical angle of mediums of refractive indices n; and n, (n1> ny).
The light signal once entered the fiber and takes total internal reflection with in the core as
shown in fig.4, it will continue to propagate till the other end of the fiber.

ACCEPTANCE ANGLE:
The maximum angle of incidence to launch the beam at its one end to enable the entire

light to pass through the core is called acceptance angle.

When we launch the light beam in to the fiber at its one end the entire light may not pass
through the core and propagate. Only the rays which make the angle of incidence greater than
critical angle undergo total internal reflection and propagate through the core and all other rays
are lost. Let us consider a ray enters the core of refractive index n; from air medium of refractive
index n, with an angle of incidence «; at the interface of air and core and incident at the interface
of core and cladding with an angle of incidence @ as shown in below figure.

Normal to core-
cladding Interface

=

B_,,-,—-";-?Cladding (Nn5)

[ Fiber axis

Air (ng) Cladding (n,)

Fiber end
face

e s gy e e e e e e e e e e e e e

C
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If the angle of incidence at the interface of air and core is maximum (ai=amax), the angle of
incidence at the interface of core and cladding is equal to critical angle (6=6.). If the angle o;is
less than the amax, the angle of incidence at the interface of core and cladding would be greater
than the critical angle (6>6;), and further total internal reflections cascades through the fiber.
From fig.,AABC,
a, =90—46 )
sina; _ my
sin a, n,

At air — core interface, the Snell s law is,
: ny -
sing; = —tsina,
No
sina; = ~sin(90 — 6)
o
sina; = ﬂcos 0
No
sin ., = —=cos 0, (When ;= omax, =6,  -—--- 1)

Snell’s law at core and claddlng interface gives,
At critical angle(6=6.), the angle of refraction is 90°
n,sinf@, = n,sin 90

Sin HC = Tl_1
2 n3
cosf. =y1-sin*6. = [1-— - (2)
1
2 2
2 n;y—m
= n n 1 2
From Eq. (1), we get, Sin @0, = — |1 — =2 =
n nj n,
Thus,
nd—n2
sin ., =
max n,
nf-nj
Aoy =Sin L[ X—| 3)
ne

This amax Is known as Acceptance angle.

ACCEPTANCE CONE: The acceptance cone is derived by rotating the Acceptance Angle
about the fiber axis. Light launched at the fiber end within this acceptance cone alone will be
accepted and propagated to the other end of the fiber by total internal reflection. Larger
acceptance angles make launching easier.

Acceptance
cure

Page|] 16



Numerical Aperture: The numerical aperture (NA) of an optical fiber is defined as sin of
acceptance angle and is dimensionless number that characterizes the range (ability) of angles

over which the system can accept light.

Therefore, NA =sin (amax) =

If the refractive index of air is unity (uair=1), thus the Eq. (4) reduces as,

NA = \/n? —n3 =nV2A

2_.2
ni—n;

No

n;—ns;

where A= —= called Fractional Index difference

ny

FIBER TYPES AND REFRACTIVE INDEX PROFILES:
Depending upon the refractive index profile of the core, optical fibers are classified into

two types. They are:
I. Step Index (SI) Fiber

ii. Graded Index (GI) fiber

i. Step Index (SI) Fiber: In step index fibers, the refractive index of the core is uniform
throughout the medium and undergoes an abrupt (Step) change at the interface of core and

cladding.

The light in the fiber propagates
by bouncing back and forth from
core-cladding interface. The step
index fibers propagate both single
and multimode signals within the
fiber core. The light rays propagating
through it are in the form of meridinal
rays which will cross the fiber core
axis during every reflection at the
core — cladding boundary and are
propagating in a zig — zag manner.

nir)

Single Mode

ol

m [ |n
2a

Multimode

100 pwm

The variation of refractive index profile with radial distance r for the SI fiber is shown in

the above figure.

n(r) = ny(core)

= n, (cladding)

The number of possible propagation modes in the core depends on the radius of the core and NA

of the fiber and is given by VV-number as

V= ZA—" a(NA) Where ‘@’ is the radius of the core and NA-Numerical Aperture.

2
The number of modes (paths) through the SI fiber is = V;
The propagation modes in the SI Fiber in both the modes are shown below:

Core

Cladding

Single mode SI fiber

Cladding

Multimode SI Fiber
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ii. Graded Index (GI) Fiber: In graded index fibers, the refractive index of the core varies
gradually as a function of radial distance from the fiber center.

The refractive index of the core decreases as we move away from the centre. The
refractive index of the core is made to vary in the form of parabolic manner such that the
maximum refractive index is present at the centre of the core.

The variation of refractive index profile with Graded Index Fiber
radial distance r for the Sl fiber is shown in the P

ny 1 —2.‘.‘.[:—:}‘:

adjacent figure. N

nix}
n(r) =n; [1-24(%)" (0 <7 < a) (core) ﬂ

=n;, (cladding)
Here a is the grading parameter which decides the
variation of RI in core.

a = 1 for linear grading,

o =2 for parabolic grading

a = oo for Step Index grading.

The transmitted light signals travel through the
core medium in the form helical (sine waves) rays, which
will not cross the fiber axis at any time.

The number of modes propagated through the Gl
Fiber depends on the radius of the core and NA of the fiber. Therefore,

S0-T3um

2
The possible number of modes propagated through the Gl Fiber is = VT
The propagation modes in the GI Fiber are shown below:

Graded Index Fiber

ATTENUATION:
Attenuation means loss of light energy as the light pulse travels from one end of the fiber
cable to the other. It is also called as signal loss or fiber loss. It is directly proportional to the

length of the cable. It limits the optical power which can reach the receiver at the destination end
of the fiber.
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Attenuation is mainly caused as a result of
I. Absorption loss
ii. Scattering loss and
iii. Bending losses.

Attenuation is defined as the ration of input optical power (P;) to the output optical power (P,)
The following equation defines the signal attenuation as a unit of length:

a(dB/km) = —%loglo (%‘:)

Absorption loss: Every material has a characteristic of absorbing a fraction of the incident
light. Optical fibers are also no exception. This property is called intrinsic absorption.
Besides the intrinsic absorption, the impurities whatsoever present in optical fiber also absorb
light which is called impurity (Extrinsic) absorption. Such types of absorptions result in the
reduction of the strength of the light signal propagating through the optical fiber cable.

Scattering __loss: Light signal
scattering can be thought of as the
deflection of a ray from a straight

path, for example by irregularities
in the propagation medium,
particles or in the interface
between  the  two media.

Irregularities and defects (which [ cLapping
are produced when optical fibers

are manufactured) are main causes for the scattering of light in unexpected directions.
Bending losses: This loss induced by physical stress on the fiber. Bending loss is classified

according to the bend radius of curvature:

a) Macrobend Loss  b) Microbend Loss
a) Macroscopic Bending: Macro-bend Losses are
observed when a fiber bend’s radius of curvature is
large compared to the fiber diameter. These bends
are a great source of loss when the radius of
curvature is less than several centimeters.

b) Microscopic Bending: Micro-bend Loss are
caused by small discontinuities or imperfections in
the fiber. Uneven coating applications and improper
cabling procedure increases micro bend loss.
External forces are also a source of micro bends.

Macroscopic Bending

External Force

n, cladding

n, core

n; cladding

bof
External Force

Microscopic Bending

Page|] 19



APPLICATIONS OF OPTICAL FIBERS:

Due to its variety of advantages optical fiber has a wide range of application in different
fields namely:

i.  Communication:

ii. Medicine and

iii. Sensors etc.,
i. COMMUNICATION: Optical fibers are used as wave guides in the communication system.

A typical block diagram of optical fiber communication system (OFCS) is shown in the
following figure. It mainly consists of the following parts:
a) Encoder, b) Transmitter, c) Waveguide, d) Receiver and d) Decoder.

Converts biary signal

Transmitter o optical (light on for
o= mmmmmmmmmmmees ‘1" and off tor “07)

Electrical | Fncoder y| Drive | | Light % Optical fiber

Signal |/P Circuit Source

Electrical to binary
signal (O or 1)

Receivebhinary ([ oo et
signal and pass to

1

1

H

i - Signal |}
||ght50urte ! Detector Restorer i Decoder Teji':tr'lcal
Optical to emmem - \ ] Signal O/P

electrical signal KeSp all the
Amplifies the

electrical signalin

signal .
& sequentialform

Fig.: Block Diagram of Optical Fiber Communication System

a) Encoder: The audio signal (i.e., the words spoken by us) is converted into electrical signal
which is an analog signal. Encoder is an electronic circuit that converts this analog signal
into binary or digital signals.

b) Transmitter: The digital signal from the encoder is fed to the transmitter which consists
of two parts- Drive circuit and Light source. Drive circuit receives the digital signal from
encoder and feeds it to the light source. Light source is usually LED or a Diode LASER. If
digital ‘0’ is received then light source will be turned OFF. If digital ‘1’ is received then
the light source will be turned ON. Thus light source converts electrical signals into
optical signals.

¢) Waveguide: Now the Optical signals generated by the transmitter are fed to an optical
fiber which acts as waveguide. The signal traverses over longer distances through these
waveguides.

d) Receiver: On the other side of the waveguide, he optical signal is received by the receiver
which consists of Photo detector, amplifier and a signal restorer. The Photo detector
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receives the optical signal and generates the equivalent electrical signals. These electrical
signals are amplified by the amplifier. The signal restorer keeps all the electrical signals in
a sequential form and supplies to decoder.

e) Decoder: It is an electronic system that converts the digital signal to analog signal.

MEDICAL:

Optical fibers are generally used in Endoscopy. They are also used in LASER
Angioplasty (Laparoscopic Surgery) which is usually used for operations in the stomach area
such as appendectomies. A LASER Angioplasty usually makes use of three channels
(bundles) of optical fibers. Channel 1(One optical fiber cable) is used to observe where
exactly the cholesterol deposits are present. LASER of suitable power is sent through channel
2 to destroy the cholesterol deposits. Channel 3 is used to suck out the debris.

SENSORS:

Another important application of optical fibers is in sensors. If a fiber is stretched or
squeezed, heated or cooled or subjected to some other change of environment, there is
usually a small but measurable change in light transmission.

Level Sensors:

A chamgered Optical fiber, containing of
core alone is used in a level sensor. The
condition here is that the refractive indices of
air, core and liquid should such that Najr < Ngore
< Niiquid-

A light signal from the source is fed to the
fiber core as shown in fig. (i). The light signal
reaches the detector after getting subjected to
total internal reflections in the core. It is
observed here that the liquid level did not touch
the tip of the optical fiber yet and hence the
light signal smoothly reaches the detector.

When the liquid raises to sufficient level as
shown in figure (ii), at the point of core-liquid
interface, total internal reflection cannot take
place. The reason is Neore< Niiquia. Therefore the
light signal gets leaked into liquid without
reaching the detector.

Thus the light signal reaching the detector
indicates lower liquid level while the detector
does not receive the light signal, indicates
sufficient level of the liquid.
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